Monolithic integration of well-ordered nanoporous structures in the microfluidic channels for bioseparation.

نویسندگان

  • Chiung-Wen Kuo
  • Jau-Ye Shiu
  • Kung Hwa Wei
  • Peilin Chen
چکیده

Gel electrophoresis and capillary gel electrophoresis are widely used for the separation of biomolecules. With increasing demand in the miniaturized devices such as lab-on-a-chip, it is necessary to integrate such a separation component into a chip format. Here, we describe a simple approach to fabricate robust three-dimensional periodic porous nanostructures inside the microchannels for the separation of DNA molecules. In our approach, the colloidal crystals were first grown inside the microchannel using evaporation assisted self-assembly process. Then the void spaces among the colloidal crystals were filled with epoxy-based negative tone photoresist (SU-8). UV radiation was used to cure the photoresist at the desired area inside the microchannel. After subsequent development and nanoparticle removal, the well-ordered nanoporous structures inside the microchannel were obtained. Our results indicated that it was possible to construct periodic porous nanostructures inside the microchannels with cavity size around 300 nm and interconnecting pores around 30 nm. The mobility of large DNA molecules with different sizes was measured as a function of the applied electric field in the nanoporous materials. It was also demonstrated that 1 kilo-base pair (kbp) DNA ladders could be separated in such an integrated system within 10 min under moderate electric field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer simulations of colloidal particles under flow in microfluidic channels

Title: Homogeneous crystallization and local dynamics of poly(ethylene oxide) (PEO) confi ned to nanoporous alumina Bulk PEO crystallizes via heterogeneous nucleation at defects and impurities whereas PEO confi ned in self-ordered nanoporous alumina (AAO) crystallizes mainly via homogeneous. PAPER Arash Nikoubashman et al. Computer simulations of colloidal particles under fl ow in microfl uidic...

متن کامل

Construction of multifunctional photonic crystal microcapsules with tunable shell structures by combining microfluidic and controlled photopolymerization.

Holey photonic crystal (PC) microcapsules are generated through a combined technique of microfluidic- and controlled-photopolymerization. This versatile route allows the fine tuning of shell structure (from well-ordered nanoporous to single-hole structures with tailored hole size) by etching or by varying UV light intensity, and endowing the PC microcapsules with multifunctional properties.

متن کامل

Microfluidic immunodetection of cancer cells via site-specific microcontact printing of antibodies on nanoporous surface.

We demonstrate an efficient method for cancer cell capture via cell line-specific protein deposition on nanoporous surface in microfluidic channels. Specifically, anti-epithelial cell adhesion molecules (EpCAM) were microcontact printed onto nanoporous silica substrate with optimal pore size of 4 nm, porosity of 52.4 ± 0.2%, and thin film thickness of 130 ± 0.5 nm. SkBr3, Colo205, and MDA-MB-43...

متن کامل

Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures

Solid state nanoporous membranes show great potential as support structures for biointerfaces. In this paper, we present a technique for fabricating nanoporous alumina membranes under constant-flow conditions in a microfluidic environment. This approach allows the direct integration of the fabrication process into a microfluidic setup for performing biological experiments without the need to tr...

متن کامل

Ordered Nanoporous Carbon Based Solid-Phase Microextraction for the Analysis of Nitroaromatic Compounds in Aqueous Samples

In this paper, the possibility of using a new ordered nanoporous carbon as a new fiber in headspace solid phase microextraction (HS-SPME) to determine of mononitrotoluenes (MNTs) in waste water is demonstrated. The structural order and textural properties of the ordered nanoporous carbon were studied by X Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) images and nitrogen adsorpti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chromatography. A

دوره 1162 2  شماره 

صفحات  -

تاریخ انتشار 2007